Google Brain Team представила технологию масштабирования изображений на базе диффузионных моделей
Google Brain Team представила технологию масштабирования изображений на базе диффузионных моделей
Google Brain Team продемонстрировала технологии масштабирования изображений на базе диффузионных моделей.
Представлены два связанных алгоритма, которые генерируют фотографии высокой чёткости без потери качества.
Модель обучается методам искажения изображения, а затем поворачивает весь процесс вспять, постепенно удаляя шум для достижения заявленного результата.
Инженеры обнаружили, что SR3 превосходит существующие генеративные алгоритмы, такие как PULSE и FSRGAN, особенно при работе с портретами и фотографиями природы.
В компании не остановились на достигнутом и разработали ещё одну диффузионную модель под названием CDM. На этот раз нейросеть обучили миллионам изображений высокого разрешения из базы ImageNet.
Алгоритм использует каскадный подход и увеличивает фотографии в два этапа: с разрешения 32×32 -> 64×64 -> 256×256 (в 8 раз), либо с 64×64 -> 256×256 -> 1024×1024 (в 16 раз).
Google опубликовала примеры работы алгоритмов
SR3: Image Super-Resolution
SR3 is a super-resolution diffusion model that takes as input a low-resolution image, and builds a corresponding high resolution image from pure noise. The model is trained on an image corruption process in which noise is progressively added to a high-resolution image until only pure noise remains. It then learns to reverse this process, beginning from pure noise and progressively removing noise to reach a target distribution through the guidance of the input low-resolution image
CDM: Class-Conditional ImageNet Generation
Having shown the effectiveness of SR3 in performing natural image super-resolution, we go a step further and use these SR3 models for class-conditional image generation. CDM is a class-conditional diffusion model trained on ImageNet data to generate high-resolution natural images. Since ImageNet is a difficult, high-entropy dataset, we built CDM as a cascade of multiple diffusion models. This cascade approach involves chaining together multiple generative models over several spatial resolutions: one diffusion model that generates data at a low resolution, followed by a sequence of SR3 super-resolution diffusion models that gradually increase the resolution of the generated image to the highest resolution. It is well known that cascading improves quality and training speed for high resolution data, as shown by previous studies (for example in autoregressive models and VQ-VAE-2) and in concurrent work for diffusion models. As demonstrated by our quantitative results below, CDM further highlights the effectiveness of cascading in diffusion models for sample quality and usefulness in downstream tasks, such as image classification.