
6 Tips to Integrate Security
into Your DevOps Practices

Modern App Development
and Enterprise DevOps Series

6 tips to integrate security into your DevOps practices 2

Summary
DevOps proven practices illustrate how collaboration between developer and operations teams

leads to faster software delivery. Now, the issue facing digital leaders is the security and compliancy

of their code, workflows, and infrastructure. The logical next step: integrate your security team

with the existing DevOps team—breaking down another organizational silo. The most challenging

part of DevSecOps adoption is to make security complement existing business processes, culture,

and people. How can technical leaders develop cross-function collaboration and unite developer,

security, and operations teams around the culture of security as a shared responsibility?

The tips inside include how to:

Develop a security-first company culture

to drive DevSecOps adoption

Proactively secure your code, workflows, infrastructure,

and software supply chain against vulnerabilities

Provide your teams with shared tooling and best practices

to enable end-to-end visibility and traceability

Leverage improved insights and policy automation

to realize continuous compliancy

The most challenging part of DevSecOps adoption
is to make security complement existing business
processes, culture, and people

6 tips to integrate security into your DevOps practices 3

Table of contents
6 tips to integrate security into your DevOps practices

TIP 1 Build a security-first culture across the business 5

TIP 2
Integrate security in the early stages of the
development lifecycle

9

TIP 3 Monitor and observe continuously with purpose 15

TIP 4 Embrace everything-as-code 23

TIP 5 Realize compliancy with policy automation 31

TIP 6 Secure and visualize your software supply chain 35

Closing thoughts 38

How Microsoft and Sogeti can help 40

6 tips to integrate security into your DevOps practices 4

Introduction
Throughout the years, software development practices evolved to serve the needs and the speed of business.
Recently, DevOps methodologies provided software engineers and operations teams with a faster and more efficient
way to develop code. However, efficient DevOps practices uncovered a new bottleneck, pushing security to the end of
application development and management. This bottleneck is part of the reason organizations typically take 218 days¹
to uncover a security vulnerability, which can be extremely costly. NIST² estimated the cost of fixing a security defect
in production can be up to 60 times more expensive than during the development cycle. Which is why research by
McKinsey³ indicates embedding security early into the stages of application development and management—or shifting
left—is a major investment focus for digital leaders. These leaders recognize that integrating security into their pipelines
and leveraging modern platform capabilities is the next logical evolution of the DevOps methodology, DevSecOps.

Now, the issue facing digital leaders is the security and compliancy of their code, workflows, and infrastructure—all
of which deal with external pressure from tight delivery deadlines. To make rigid deadlines, organizations often forego
security best practices and deploy code with known vulnerabilities. Compliance also remains a key issue due to relating
audits’ exhaustive and time-consuming nature. Forbes reports4 “Some CISOs spend 30% or more of their time dealing
with compliance issues.” So how can your enterprise harden security and address compliance at the same time?

Yet again, the answer is collaboration. It’s time to include security within your DevOps teams. Your DevSecOps
team’s collaborative success relies on shared tooling and visibility into application health at every stage of
application development and management (ADM). Through early detection, organizations drive efficient and
cost-effective fixes of security vulnerabilities. At the same time, capturing opinionated insight at every stage of
ADM enables organizations to achieve continuous compliancy. The most challenging task is to make security
complement existing business processes, culture, and people. It’s crucial to develop cross-function collaboration
and unite development, security, and operations teams around the culture of security as a shared responsibility.

Improving security posture isn’t just about moving security to an earlier phase of ADM, it’s about adopting a different
way of working, one that emphasizes cross-team collaboration, shared empathy, and shared responsibility. Ideally,
security is baked into ADM, so teams don’t see it as an extra step but as an integral step to software delivery. Embracing
DevSecOps requires organizations to shift their culture, evolve existing processes, leverage modern platform capabilities,
and strengthen governance. Here are six tips for you, a technical leader, to integrate security with your DevOps practices.

Your DevSecOps team’s collaborative success relies on shared
tooling and visibility into application health at every stage of
application development and management (ADM).

1GitHub, Octoverse Security Report, 2020
2Security Boulevard, The Importance of Fixing and Finding Vulnerabilities in Development, 2020
3Microsoft, Developer Velocity: Lessons from Digital Leaders, 2021
4Forbes, Awash In Regulations, Companies Struggle With Compliance, 2019

https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://securityboulevard.com/2020/09/the-importance-of-fixing-and-finding-vulnerabilities-in-development/#:~:text=According%20to%20the%20NIST%20(the,that%20should%20concern%20most%20organizations
https://azure.microsoft.com/resources/developer-velocity-lessons-from-digital-leaders/
https://www.forbes.com/sites/taylorarmerding/2019/08/30/awash-in-regulations-companies-struggle-with-compliance/?sh=9d84d7f150e3

6 tips to integrate security into your DevOps practices 5

TIP 1

Build a security-first
culture across the business
Developing a security community in your
enterprise improves buy-in across the
organization and energizes employees

DevSecOps starts with the people. You do not “implement” DevSecOps, you embrace it. And for that to happen,
your organization needs to adopt a DevSecOps culture while “living and breathing” it, via executive buy-in.
For success, you’ll need the entire organization, not just the IT people, product teams, and project managers.

Modern security is dependent on teamwork. A security group alone no longer offers sufficient protection for your
enterprise. Novel threats push security earlier in the software lifecycle to occur closer to applications. Now, effectiveness
depends on the ability of the security, developer, and operations teams to work together and share knowledge. Often,
this starts with the security architect working alongside the DevSecOps teams—adding security principles to the very
first stages of development. Developers should also expand their toolkit with operations knowledge. Tooling can help,
but awareness and mindset are key. It all starts with teaching everyone to appreciate a true DevSecOps way of working.

Culture is the most crucial part of the adoption process. Thus, it is recommended to start with people, move to processes,
and then support it with technology. Heavy investment in technology fails if your people have no interest in adoption.
It requires a cultural shift for people to consistently practice a security mindset. DevSecOps is based on a shared security
model, wherein teams need to collaborate. In this model, security is not viewed as any one team’s responsibility, but as
a collective. Note: this does not mean that specialized security and infrastructure personnel are no longer required.

To start your DevSecOps journey, you’ll need to cultivate the understanding that security is a
shared responsibility throughout the organization through (1) training that empowers your teams
and (2) a strong InnerSource community.

TI
P

 1

6 tips to integrate security into your DevOps practices 6

Revitalize your training efforts

Training is crucial for everyone in your DevSecOps
team to understand not only their role, but also how
it intersects with other responsibilities on the team.
Through cross-team knowledge sharing, the hope
is for everyone to raise their security awareness.
Remember, your DevSecOps program will take time to
grow. Widespread adoption also requires backing from
management, so teams aren’t overly pressured as they
take time to mature with new processes and tooling.

Start building a security-aware team through early
adoption of the Security Champion Model. The champion
is nominated or chosen from the team and becomes
the voice of security for the team. They’ll engage
in all the security-related activities from inception
to release, but the security champion is not solely
responsible for all security issues in a given release.
Instead, they coordinate and track security issues while
communicating with relevant stakeholders. Use the
security champion to act as an on-site security advisor
who can anticipate potential security issues and work
on risk analysis—outlining security requirements
early in the development phase. These insights help
build a security foundation for your DevSecOps team.
Generally, think about assigning this role to a senior and
experienced stakeholder as it requires an optimum level
of communication, practical knowledge of security, and
willingness to confidently voice their opinion on red flags.

Assess your organization’s readiness for a DevSecOps
cultural change with the following types of questions:

Do senior stakeholders openly and
explicitly support the use of Lean, Agile,
and DevOps methods in the program?

Does the organization support direct
collaboration among development,
testing, and operations teams?

Are security leaders aware of the new role
their teams will play in modern application
development and management?

Will the organization provide the physical and
social environments needed for team success?

Will management understand and
advocate for the extra time and effort
to ramp up DevSecOps techniques?

Use the security champion
to act as an on-site
security advisor who can
anticipate potential security
issues and work on risk
analysis—outlining security
requirements early in the
development phase.

TI
P

 1

6 tips to integrate security into your DevOps practices 7

Kickstart a strong InnerSource community

Keeping the security mindset alive means working
hard to build community. Just training your people
and starting a culture is not enough. Long-lasting
success means cultivating a vibrant and energetic
community of people.

One way to kickstart your community is through
adopting InnerSource best practices, where teams
share and adopt ready-to-use reference architectures,
code, and common components to streamline and
optimize their workstreams. This collaborative way of
thinking delivers increased delivery velocity, smoother
collaboration between groups, higher-quality
development, and better documentation. Have your
community set up events around InnerSource patterns
and position it as an enabler for a new way of working.

Appoint a group of key individuals to guide the
onboarding process for those interested in joining the
community. These guides should outline InnerSource
best practices and develop useful educational content.
At the same time, instruct the guides to build out the
InnerSource repository—setting a baseline and standards
for others to view and eventually contribute to. This central
location enables others in the community to help, either by
reviewing or adding remarks.

Focus evangelism efforts on community events, around
either topics in the InnerSource Library, or common
DevSecOps problems and solutions. DevSecOps is powered
by involvement, so keep the door open to everyone in
your company.

Focus evangelism efforts on community events,
around either topics in the InnerSource Library,
or common DevSecOps problems and solutions.

To illustrate what a security-first culture looks like in practice,
let’s look at the fictional story of the online retail company
“Custom City Clothing.” TI

P
 1

6 tips to integrate security into your DevOps practices 8

Custom City Clothing’s story

Using a security
champion to unite teams

Mark opens up his lunch, hoping the cobb salad will take
his mind off the company culture initiative he’s working
on. As CEO, Mark leads Custom City Clothing and is
excited about the upcoming DevSecOps transformation.
But, at the same time, Mark’s aware that the security,
application, and operations teams don’t interact much
in their daily routines and will resist the change. Looking
for a path forward, Mark reached out to Jodie, a senior
application developer, to brainstorm some solutions.

As Jodie and Mark talk through some ideas,
a Security Champion Model immediately catches
their attention. They like the idea of a champion
acting as an on-site security advisor. This champion
should be someone capable of anticipating potential
security issues and working on risk analysis. Ideally,
at some point, this champion starts outlining security
requirements earlier in the development phase.

Jodie and Mark then introduce this idea to the security,
development, and Ops teams for nominations.
They did, however, make a few requirements for any
nomination. The first is that the role must be a senior
and experienced stakeholder—ready to communicate
across teams effectively. More so, they want a person
with practical knowledge of security so they wouldn’t

feel scared voicing their opinion on red flags.
After reviewing the nominations, they select Maddie,
a developer with experience helping security initiatives
in the past. Before adopting this role, Maddie met with
security leaders for an accelerated security training
course. This added knowledge gives her the context
to be situationally aware when meeting across teams.

Maddie hit the ground running and started engaging
in all security activities from inception to release.
Now the liaison between teams, Maddie articulates the
needed security updates, requirements, and compliance
guardrails to the security teams based on operations
and developer team requirements. She’s also helped
spearhead the development of InnerSource practices
within the company—hoping to create a smoother
collaboration between teams and grow documentation
of reference architectures, application and infrastructure
code, and common components. Having a single
point of contact for security helps Mark gather buy-in
from across the teams. And now that the cross-team
cooperation and knowledge sharing has started
in earnest, Mark feels more ready to introduce the
process and technology changes that would complete
Custom City Clothing’s DevSecOps transformation.

TI
P

 1

6 tips to integrate security into your DevOps practices 9

TIP 2

Integrate security in
the early stages of the
development lifecycle
Thinking about security upfront and
embedding security practices early will help you
avoid vulnerabilities and common roadblocks

Choosing a security solution at the end of the development process offers limited protection for your
critical code, data, and software supply chains. Instead of pushing security to the end of the development
process, the idea is to do it as part of day-to-day development. It ensures security checks and best practices
occur early and throughout the development process, reducing the likelihood of vulnerabilities.

So, how do we shift security left?

There’s much to consider, including modern tooling, adoption of best practices, and buy-in across the
organization. It begins with developers including security scans as part of their CI/CD workflows. These
continuous security scans position enterprises to secure applications by design and minimize vulnerabilities.

More tactically, your enterprise can power a successful
shift left with two specific practices: (1) moving from
batch scanning to continuous assessments and compliance
checks and (2) ensuring code quality, security posture,
and compliance with both static and dynamic analysis.

TI
P

 2

6 tips to integrate security into your DevOps practices 10

Move from batch scanning to continuous
assessments and compliance checks

It’s time to evolve past the batch approach that many
security teams currently use to scan for vulnerabilities.
Batch scanning not only requires human involvement,
it’s also prone to errors and cannot work on demand.
Moreover, these security checks occur independently
from the developer team—limiting the context for
security professionals. Delays may occur between
software lifecycles and feedback often arrives late.

The fastest path to an optimum security posture is
through continuous assessments and compliance checks.
This happens at multiple levels from code analysis to unit
testing of security functions. Here are some foundational
tenets for successful continuous assessments:

Find common vulnerabilities and exposures
(CVEs): Often the most common application
vulnerabilities scanned for remediation are
the OWASP Top 10 vulnerabilities. A tool
like the Azure Security Center’s regulatory
compliance dashboard scans your Azure
subscription in search of these vulnerabilities.

Expand your scans for compliance:
Enterprises that don’t scan for compliance
or advanced threats leave themselves open
to modern threats. The answer is to scan for
more comprehensive vulnerabilities including
compliance readiness using best practices like
the NIST framework or the CIS Benchmark.

Detect early, fix early: Set processes to scan
container images and infrastructure as code
files for CVEs before they launch to ensure
that no vulnerabilities go into production
and remediation occurs as early as possible.

Automate processes: Build efficiency within
your enterprise by switching to automated
processes that find and remediate issues faster
by scanning whenever a new change occurs,
all while requiring no human intervention.

Improve the traceability: Ensure every step
of the pipeline generates data that can later
be used for auditing or trend analysis.

It’s time to evolve past
the batch approach that
many security teams
currently use to scan
for vulnerabilities.

TI
P

 2

https://owasp.org/www-project-top-ten/
https://azsk.azurewebsites.net/index.html
https://docs.microsoft.com/compliance/regulatory/offering-nist-csf
https://www.cisecurity.org/benchmark/azure/

6 tips to integrate security into your DevOps practices 11

Manage by the metrics: Generate reports
that grade your enterprise on the total
CVE in your enterprise’s infrastructure,
level of code smell, and duplicated code.

Use quality gates to ensure compliance:
Before each release, use a security gate
to measure the quality of code against
prescribed standards. If the code does
not meet quality standards, pause
the release to fix the vulnerabilities
immediately before approving.

The fastest path to an optimum security
posture is through continuous assessments
and compliance checks.

Although the enterprise benefits greatly from automated processes, those used to batch scanning may feel they
are no longer needed in the team. It’s crucial to articulate this as a move away from the repetitive tasks taking
up their time. Think about ways you can upskill this employee to be more effective in driving high-business
value. Transitioning to continuous assessments and compliance checks may also cause friction with developer
teams who see their application security roles expand. Dissuade the notion of security as time consuming and
improve developer commitment by offering them continuous feedback and remediation recommendations
on their code and the libraries they use (deprecation, vulnerabilities, OSS license incompatibilities).

TI
P

 2

6 tips to integrate security into your DevOps practices 12

Evaluate code quality and harden security
with continuous static and dynamic analysis

Gathering a holistic understanding of the quality
of your enterprise’s delivery pipeline, code, and
applications is called “Qualimetry.” Using static and
dynamic scans together helps to outline the Qualimetry
of your enterprise’s continuous integration pipelines.
Consistently looking at quality indicators helps reduce
the risk of drift and technical debt. Further, you allow
the development team even greater autonomy to
address code quality. Take this concept even further
and implement a delivery criterion that limits functional
bugs and bad code quality ratings. These CI pipeline
quality checks harden the security of the whole system.

In many situations, enterprises often compile findings
from different tools to get a more accurate picture
of their Qualimetry. This picture includes not only
code-based vulnerabilities but also dependency-
related vulnerabilities, infrastructure issues, and
image evaluation. Here are some considerations when
compiling tools for a comprehensive security toolset:

Scan for vulnerabilities daily: Implement
a code-based vulnerability tool like
CodeQL within the daily pipeline to give
the development team regular updates of
known vulnerabilities. CodeQL integrates
very easily with GitHub to report errors and
vulnerabilities across development languages,
such as Java and JavaScript. This reduces
code correction time when modifications are
made to qualify technical evolutions faster.

Incorporate a dependency checker: You’ll
also want to utilize a powerful dependency
checker within your CI pipeline to scan for
both dependencies pulled in the CI and

assets in the repository. What’s more,
you can set up a firewall to block the
pipeline based on security level objectives,
customized for each application.

Search your container images:
To safeguard secure deployment to
containers, it’s necessary to scan the
container for image vulnerabilities.

Remember to scan infrastructure: Static
application security testing (SAST) is not
only a question of identifying application
security threats, but also infrastructure
issues. If your enterprise is already equipped
with infrastructure-as-code (IaC), then it
becomes easily controlled against a known
list of issues and patterns. Azure Resource
Manager and other IaC tools offer linting
capabilities to better scan infrastructure
code included in the CI.

Form a comprehensive analysis: Note that
these tools should be used together to
provide a complete vulnerability report.

Consistently looking at
quality indicators helps
reduce the risk of drift
and technical debt.

TI
P

 2

6 tips to integrate security into your DevOps practices 13

As it stands, many organizations rely only on dynamic
analysis of code, which gives an application-centric
view using “black-box” techniques to evaluate code.
These scans cannot offer the holistic view needed
to accurately understand the current state of your
enterprise’s delivery pipelines. It’s important to
complement dynamic analysis with static analysis of
code in delivery pipelines, so teams can be informed
of potential problems as early as possible. Static code
analysis enables you to measure code quality through
indicators such as bugs, vulnerabilities, technical debt,
unit test coverage or code duplication. It also helps
locate security flaws through the recognition of known
CVEs in certain dependencies.

Unfortunately, static analysis is a source of “false
positives”. So, once you perform SAST against
applications and infrastructure, it’s important to
continue dynamic application security testing (DAST)
to correct the false positives. From your CD pipeline,
deploy a temporary environment and start dynamically
checking security breaches against this temporary
environment. You can then integrate a vulnerability
assessment solution purpose-built for this task like
Azure Defender. When performed on a temporary
environment, you lower threat risk against critical data
and systems while preventing a potentially dangerous
new deployment.

This figure shows GitHub code scanning in context—
alerting users to an untrusted URL redirection.

Most importantly, DAST and SAST scans cannot
be performed alone or just once. They must run
continuously. Regular and consistent scanning allows
updates to be addressed as they appear rather than
during elongated reviews occurring prior to each
production release. These technical evolutions can
thus benefit from the functional qualification phases
to ensure technical non-regression. This combination
of continuous testing, SAST, and DAST enables your
enterprise to enhance code quality at the earliest
opportunity while locking down vulnerabilities
across infrastructure, images, and applications.

Regular and consistent scanning allows
updates to be addressed as they appear rather
than during elongated reviews occurring prior
to each production release.

To illustrate how cultivating holistic vulnerability threat analysis
looks in practice, let’s look at the fictional story of financial services
company “King Banking.”

6 tips to integrate security into your DevOps practices 14

King Banking’s story

Expanding security
scans for compliance

Angela, the CEO of King Banking, sat down at her desk
with a cup of matcha tea to start the day. She’s equal
parts excited and nervous about the upcoming launch
of King Banking’s personal finance app. On one hand
she’s very confident that users will love the design and
functionality of the app. But, at the same time, she
doesn’t feel reassured that the app will launch with
enough security and compliance controls. Underpinning
this thought is that King Banking is based in Germany
and subject to strict GDPR compliance requirements.

With launch only 9 months away, Angela set up a meeting
with King Banking’s CISO, Jonas, to develop a plan for
alleviating their security and compliance concerns.
Jonas knew he needed to bring in leaders from both the
development and security teams to form a comprehensive
DevSecOps team. Jonas started by inviting one of the
security team leads, Johan, who conducts application
security scans. From the application team, Jonas selected
Mary to overview their current delivery pipelines.

The newly formed King Banking’s DevSecOps team
quickly got to work. Johan suggested that they move from
conducting batch scanning to continuous assessments
and compliance checks. With automated scanning, Mary
knew the team needed a tool to find CVEs quickly. She
knew the Secure DevOps Kit for Azure automatically

scans for CVEs like the OWASP Top 10 vulnerabilities.
Jonas also wanted insight into compliance and insisted
they expand scans using best practices like the NIST
framework or the CIS Benchmark. While impressed with
the suggestions, Johan articulated the need to effectively
manage the new data that would come from expanding
scans. He outlined that they should use quality gates to
ensure compliance standards before each release. If the
code does not meet King Banking’s quality standards,
their team can pause the release to fix it before approval.
Pleased with the steps outlined, Angela set out the
DevSecOps team to execute against these suggestions
and prepare for the personal finance app to launch.

Three months have passed since King’s Banking
launched their wildly successful personal finance app.
King Banking’s continuous assessment and compliance
check approach protected their product launch from
falling flat. And now, with every release, their DevSecOps
team puts processes in place to scan for compliance and
vulnerabilities before each code release is approved.
With their commitment to compliance and data
security, the DevSecOps team pleased both Angela and
the GDPR regulators. Angela now eagerly awaits the
launch of new product features instead of worrying
about application security and loss of customer data.

TI
P

 2

https://azsk.azurewebsites.net/index.html
https://owasp.org/www-project-top-ten/
https://docs.microsoft.com/en-us/compliance/regulatory/offering-nist-csf
https://docs.microsoft.com/compliance/regulatory/offering-nist-csf
https://www.cisecurity.org/benchmark/azure/

6 tips to integrate security into your DevOps practices 15

TIP 3

Monitor and observe
continuously with purpose
Planning out objectives for continuous, context-
based monitoring and observation enables your
enterprise to be more proactive against threats

Too often, enterprises leverage a monitoring or observability solution without adapting it to work for their
organization. When enterprises fail to fully plan their monitoring initiative, they overload themselves with
data. This can be like looking for a digital needle in a haystack. What’s more, without gathering the right
data in the right ways, data is often not actionable for your enterprise. The first step to enabling continuous
monitoring—and growing the previously limited subset of intelligence—is strategic planning.

What does purposeful and successful continuous monitoring look like?

Successful monitoring practices rely on four
things: (1) gathering holistic data that provides a
complete picture, (2) structuring data for analysis,
(3) using actionable alerts and threat intelligence
to proactively react to threats faster, and (4)
incorporating a robust monitoring toolchain built
for modern threats.

TI
P

 3

6 tips to integrate security into your DevOps practices 16

Form a complete picture with structured data

Monitoring provides the most value when you
observe everything occurring within your enterprise,
be it active directory, firewall, syslog, application log,
etc. Gathering data from an incomplete selection
of sources gives your business blind spots, so don’t
forget to collect infrastructure data coming from
outside the change management process.

Successful organizations don’t just capture all their
data; they organize it carefully. You’ll need to decide
what to log based on potential targets. Consider
the ‘signal-to-noise’ ratio when collecting data from

various sources. For instance, the syslog from a backup
server might not harbor useful information like the
syslog of the server hosting the identity solution.
Use parameters to determine the baseline for any
application, considering elements like user login/logout,
network activity, system activity, transactions, etc. In
general, log data should consist of who (user identity),
when (activity start and end timestamp), what (activity
performed), and where (source IP). In some instances,
it’s an industry or security standard that dictates the
logging requirement, e.g., PCI-DSS, ISO27001.

Successful organizations don’t just capture
all their data; they organize it carefully

Environments
Data Analytics Machine Learning Trend Analysis

Security Operation

MonitoringResolution

Cloud On Premises Event
Generation

Event
Collection

Event
Correlation

Insight

In this figure, you’ll notice the Data Analytics Machine Learning Trend Analysis provides telemetry into an
organization’s security operation. So far in this Tip, we’ve discussed how event generation and event collection
are important processes to conduct effective analysis. Later, we’ll discuss how to use those in tandem with event
correlation to provide meaningful insights to your DevSecOps team.

TI
P

 3

6 tips to integrate security into your DevOps practices 17

Leverage machine driven monitoring
for analysis and reporting

Current systems generate more data and events than
humans can interpret on their own. Too often, raw
data is useless. Furthermore, collected events must be
correlated together to provide a wider picture. The
way to overcome these challenges is machine-driven
monitoring. Ideally, it should collect and aggregate your
logs and event data from various sources, and identify,
analyze, standardize, and help find correlations. By
correlating events, you can reduce the number of false
positives and surface threats that would have stayed
undetected otherwise. For instance, let’s say your systems
witnessed three events that on their own would not set
off alarms. But, after correlating these events together,
the incident would clearly reveal itself as a bigger issue.

Machine-driven monitoring starts with setting up the
baseline for “normal” application behavior to detect
meaningful deviation. Incorporating advanced analytics
and machine learning helps indicate any unusual behavior
signaling a breach. This next step involves modelling the
normal behavior of the system using training data and
keeping watch for any deviations. Whereas generically
evaluated log data and data from other sources often
delivers false positive results, mature machine learning
solutions consistently make correct predictions.

While machine-driven monitoring unlocks insights to
better protect the enterprise, the next complementary
step is useful reporting. Useful reporting means that
the reporting is flexible enough to provide insights
using different levels of data, often engineered
for different audiences. Useful reporting can
pinpoint and zoom in on a precise domain while
also providing a wider picture of the business.

Another tenet of useful reporting is human
understanding. Because the human mind is designed to
notice patterns in forms and colors, data visualization
helps understanding and correlation analysis. It is far
quicker to detect events out of the range of usual
activity when displayed as graphs, rather than data
tables. It is also a way of improving your team members’
engagement, as graphics are often easier to grasp. Use
them as a first approach when introducing developers to
security matters before moving to more complex issues.

While machine-driven
monitoring unlocks
insights to better protect
the enterprise, the next
complementary step is
useful reporting.

TI
P

 3

6 tips to integrate security into your DevOps practices 18

Combine actionable alerts with threat
intelligence to enable proactive security

Informed enterprises use threat intelligence to
gauge potential threats vs. recorded ones. Threat
intelligence gathered from several sources about
emerging and existing threats provides a greater
understanding of threat capability, IOCs (Indicator of
Compromise), and the tactics, techniques, procedures
(TTPs), and mitigation controls to use against it.

Sharing threat intelligence data is a win-win situation.
Organizations can share experiences with different
threats according to their own unique diversity of
services, geo-location, technology, etc. This equips all
organizations with the knowledge to detect such threat
actors. They can locate threat actors based on patterns
of exploitation, repeated tools and techniques used, and
common locations or vertical targets. It’s also important
that you integrate vulnerability management with threat
intelligence to determine which vulnerabilities represent
the biggest risks based on the threat landscape.

However, monitoring alone will not solve the issue if there
is no response. Timely response to security incidents is
critical. At the same time, responding requires ample
data points for analysis, which in turn takes time and is
subject to the availability of a security analyst. Help solve
the incident by gathering data such as user location,
compromised device name, IP, type of device, and last
patch date across various systems like Active Directory
and Configuration Management Database (CMDB).

Automating responses can be crucial to mitigating
incidents in a timely manner and preventing a major
incident. You’ll need to integrate an orchestration tool
with various other systems to analyze collected data
for automated response and remediation. A couple
of quick remediation tactics are: 1. blocking users via
identity tools when detecting malicious behavior, and 2.
blocking firewall ports in response to a DDOS attack.

Threat intelligence gathered from several sources
about emerging and existing threats provides
a greater understanding of threat capability,
IOCs (Indicator of Compromise), and the tactics,
techniques, procedures (TTPs), and mitigation
controls to use against it.

TI
P

 3

6 tips to integrate security into your DevOps practices 19

Environments
Data Analytics Machine Learning Trend Analysis

Security Operation

MonitoringResolution

Cloud On Premises Event
Generation

Event
Collection

Event
Correlation

Insight

With the steps we’ve discussed, your enterprise is now set up with a powerful Data Analytics Machine
Learning Trend Analysis loop to better inform your security teams.

For proactive monitoring, you must also integrate with change management tools, preventing deployment of
unauthorized changes to production. Make sure to run all updates through the change management system to validate
it prior to release. If remediation is necessary, the change management system will execute the correct update and raise
related high-priority service desk tickets for further investigation.

To illustrate which tools help perform consistent observability
and monitoring, let’s check out some Microsoft products
mapped to the software development lifecycle.

6 tips to integrate security into your DevOps practices 20

Incorporate a robust toolchain
built for modern threats

Often the hardest task is finding a security toolchain that works for your enterprise. Piecemeal solutions complicate
matters as well. It’s crucial that components of the toolchain work in harmony and protect your enterprise from all angles.
Azure is designed to equip your organization with a tool chain that protects the entire software development lifecycle
(SDLC), seamlessly. The figure below overviews which tool relates to each function of NIST Cybersecurity framework:

Identify Protect Detect Respond Recover

Azure Azure Azure
Security Center Defender Sentinel

Let’s look closer to see how each component functions together:

Azure Defender
Advanced workload protection

for selected resource types

Azure Sentinel
Security information event management,
orchestration & automation across your
environment, including 3rd party devices

Azure Security Center
Your base level of security posture management including on-prem via Azure Arc

TI
P

 3

6 tips to integrate security into your DevOps practices 21

Azure Security Center: Azure Security Center offers security posture management and threat protection for
your hybrid cloud workloads by constantly monitoring resources for security misconfigurations. Working
together with Azure Security Center, Azure Arc helps to standardize visibility, operations, and compliance across
a wide range of resources and locations by extending the Azure control plane. Configuration guidance can be
driven by best practices or the relevant standards for an organization (PCI, HIPAA, ISO, GDPR, etc.). The security
state for all resources is visualized via the Azure Secure Score, which gives insight into the current security
posture of your organization. From there, Azure Security Center makes recommendations for improving the
score, so that your enterprise has a path forward.

Azure Defender: Azure Defender is one of the main components of Azure Security Center, providing
protection to strategic workloads, resources, and services in your cloud environments. Azure Defender offers
security for servers, App Service instances, Storage, SQL and SQL Databases, Key Vault, Resource Manager,
DNS, Kubernetes clusters, and container registries. Don’t worry, Azure Defender also provides protection to
non-Azure servers, such as those hosted in on-premises data centers or other cloud providers. Azure Defender
is a centralized tool with wide coverage and depth of security protection capabilities across the verity of cloud
native workload.

Start protecting workloads by scanning VMs, SQL servers, and container registries for vulnerabilities (analyzed
by Qualys’ cloud service). Next, you should set up Azure Defender to provide scanned results prioritized by
criticality and paired with the latest available patch. Then, leverage Azure Defender’s adaptive application
control to baseline any known safe applications and VMs. Any deviation from this baseline will in turn trigger
a security alert. This is just one way to leverage Azure Defender. When you enable Azure Defender for servers,
you can use just-in-time VM access to lock down the inbound traffic to your VMs, reducing exposure to attacks
while providing easy access to connect to VMs when needed. Other use cases include file integrity checks,
adaptive network hardening, and network maps.

Azure Sentinel: Azure Sentinel delivers Security Information and Event Management (SIEM) and Security
Orchestration, Automation, and Response (SOAR) capabilities to Azure for both cloud native resources and
on-prem resources. It’s also ready to integrate with non-Microsoft solutions using APIs. Azure Sentinel analyzes
collected data/logs for threats and event correlations. Any detected threat is then reported as an incident for
remediation. And for orchestration, Azure Sentinel comes with a playbook detailing 200+ connectors with
different solutions. The playbook helps smooth the integration process with other tools and outlines proposed
automation steps for the incident, like raising a ticket in ServiceNow.

Azure Security Center, Azure Defender, and Azure Sentinel work together using workflow automation via Azure
Logic Apps that can trigger responses – Apps – on predefined events. For instance, Azure Security Center
can trigger workflows to respond to threats using Azure Defender, such as sending an email notification to a
security team on high severity alerts so that they can investigate. What’s more, it can create a Network Security
Group to counter a brute force attack. Likewise, Azure Sentinel can trigger a block on users in Azure Active
Directory in the event any identity is compromised. These services not only provide meaningful insight for your
resources but can also be configured to automatically respond to any security breach.

To illustrate how consistent threat monitoring looks in
practice, let’s look at the fictional story of the financial
services company, Pension Experts.

https://azure.microsoft.com/services/security-center/
https://azure.microsoft.com/services/azure-arc/
https://azure.microsoft.com/services/azure-defender/#:~:text=Azure%20Defender%20is%20a%20built,premises%2C%20and%20in%20other%20clouds
https://azure.microsoft.com/services/microsoft-sentinel/

6 tips to integrate security into your DevOps practices 22

Pension Experts’ story

Remediating proactively with
automated threat alerts

Matilda is the CEO of Pension Experts, a financial services
firm in Amsterdam, Netherlands. In the past she’d felt
confident about the security posture of her enterprise,
but it’s been years since the last security upgrade. Pension
Experts provides full-service pension administration
and collects personally identifiable information (PII).
Matilda knows that PII like pension allocation, account
information, and payment record demand a thorough
approach to security—especially in the Netherlands
where they have to comply with requirements from the
De Nederlandsche Bank (DNB) and the Netherlands
Authority for the Financial Markets (AFM).

Needing to understand more about their current security
processes, Matilda called on her CISO, Stephanie, and
a security team lead, Gregory, for more insight. Eager
to help, Gregory overviewed their current security
posture and how they secure different workloads.
He noted that while functional, their current system
couldn’t find and remediate threats in a quick and
proactive way. Stephanie agreed and soon after
started researching solutions that help with security
posture management. The team looked to regroup in
a week and review some of Stephanie’s top choices.

After Pension Experts’ DevSecOps team hotly debated
top security offerings presented by Stephanie, eventually
they selected a solution comprised of Azure Security
Center, Azure Defender, and Azure Sentinel. Using
Azure Security Center, the team could consistently
monitor all their environments while evaluating the
current state of their organization effectively. Truthfully,
the team was most excited to use Azure Defender
and Azure Sentinel capabilities to quickly locate and
remediate threats. Not only could this system conduct
vulnerability scanning but it provided them with an
opportunity to configure automated threat responses.

Fast forward six months and the DevSecOps team have
fully deployed and implemented the solution. Gregory
and Stephanie love the greater threat response time
and telemetry their solution delivers. Instead of waiting
for their scheduled security scans to address threats,
Gregory receives an automated reminder whenever a
threat appears. Now, he doesn’t worry about a threat
existing for days before a scan occurs. He even set up
the new system to scan vulnerabilities with every code
release so he can find threats as they occur. Best of all,
CEO Matilda no longer worries about her company’s
ability to fend off threats before a disastrous breach.

TI
P

 3

6 tips to integrate security into your DevOps practices 23

TIP 4

Embrace
everything-as-code
Adopting an everything-as-code approach
helps your enterprise’s deployment reliability,
version control, and testing effectiveness

When your teams manually perform tedious tasks like provisioning infrastructure or managing application deployments,
it prevents them from developing new, innovative code. An everything-as-code approach streamlines software
development, delivery, and management, freeing up your developer teams to focus on development.

Similar to DevOps, an everything-as-code approach enables more efficient operations by standardizing the mechanisms
of software development. An everything-as-code approach codifies aspects of development like infrastructure, schema,
and pipelines, enabling you to manage governance from policy files rather than manual processes. Think of it as the
ideological application of applying an application development approach to other components of IT (including DevOps)
to ensure that best practices get defined and followed with minimum effort.

One of the biggest benefits of an everything-as-code approach is the decreased risk of human error. With workflows
defined as code, there is less chance for an engineer following a manual checklist to forget a step or click a wrong button
by mistake. It’s easier to pass audits with everything-as-code configurations automatically logging the system’s update
history through Git changes.

An effective everything-as-code approach covers a variety of elements: (1) infrastructure-as-code, (2)
immutable infrastructure, (3) a secure version control system, (4) configuration-as-code, (5) pipeline-as-code,
and (6) policy-as-code.

TI
P

 4

6 tips to integrate security into your DevOps practices 24

Start your transformation
with infrastructure-as-code

Many enterprises start their transition to everything-as-
code by adopting infrastructure-as-code (IaC), which
enables them to manage their IT infrastructure using
configuration files. One IaC tool is Terraform, a tool
developed by Hashicorp that enables you to predictably
create, change, and improve secure infrastructure.
We’ll dive into some practical applications of Terraform
later in this tip.

Most enterprises adopt IaC to unburden their teams
from manual infrastructure management. Manual and
tedious work slows down your enterprise and can’t
provide the needed efficiency, scalability, and testing
required for modern security.

Below are some examples of how a successful
infrastructure-as-code implementation alleviates
the pain points of manual IT management:

Manual infrastructure
management challenges

Scalability and inconsistency issues

Since manual configuration is slow, applications are
unable to scale automatically. Complicating this,
system administrators usually manage the load by
creating servers manually. These delays can also
impact general system availability as workers lose
access to systems.

Aside from scalability, inconsistency is also a top
concern. Many deployments or configurations
are not repeatable, leading to heterogenous
environments, and discrepancies between
development environments and production
environments.

Infrastructure-as-code’s
improvements

Repeatability of deployments

With IaC, you enable scalable deployments
and configurations across your development
environment, your staging environment, and
your production environment. You also minimize
drift between environments. For instance, every
environment is built with the same version of every
component across IT systems: development, staging
and production environments. What’s more, you can
ensure that your middleware, OS, and your security
patches are consistent throughout environments.

TI
P

 4

6 tips to integrate security into your DevOps practices 25

Manual infrastructure
management challenges (cont.)

High cost

Manual infrastructure management is an
expensive endeavor. Creating servers, networks,
and configuring machines costs money and
manpower. This also means your enterprise must
employ specialists in every IT domain to create and
maintain infrastructure. Further, you’ll also need
security specialists to scan and fix vulnerabilities,
misconfigurations, and hacking attempts on your
infrastructure. Running environments 24/7 is not
cost effective. Often, teams won’t destroy or shut
down their environments because it’s hard for them
to recreate or reconfigure them easily.

Insufficient monitoring capabilities

Without IaC, you must manually ensure the system
performs optimally without any bottlenecks. Issues
can be hard to pinpoint and stem from numerous
causes: bad configurations, wrong server sizes,
network issues, or even poor application design.

Infrastructure-as-code’s
improvements (cont.)

Environment efficiency savings

With IaC, you save through efficient environment
management. Your teams will be able to destroy
unused environments without worry of loss. With
everything stored and versioned, you can quickly
recreate your environments by running your CI/CD
pipelines. For example, you can create ephemeral
environments for testing purposes in your CI/CD
pipeline—running tests like integration tests,
smoke tests, user acceptance tests, etc.

Improved versioning and testing

With IaC, your enterprise can now leverage
developer paradigms for infrastructure. For example,
you can store your infrastructure in Git, version it,
and view the history of all the developer changes.
You can then easily track when a bug appears
and when the remediation occurs. You can also
apply direct tests on your code, called “Test-driven
infrastructure,” where you can test an environment
before deploying. This helps your infrastructure stay
compliant with what’s required.

IaC is just one effective way to increase repeatability, improve versioning
and reduce costs, but IaC alone, however, has limitations—in the next
section, we’ll explore how adopting Immutable Infrastructure adds
increased security controls to your everything-as-code approach.

6 tips to integrate security into your DevOps practices 26

Adopt immutable infrastructure

Even with infrastructure-as-code in place, long-running servers are at risk of configuration drift, a process in which
a data center’s production or data hosting infrastructure becomes altered over time from back-up and recovery
configurations. Manually managed servers are especially prone to configuration drift—it’s not possible to manage a
server’s configuration completely, meaning there are many opportunities for configuration drift or other unexpected
server changes to occur. Unfortunately, every time a drift appears or a server crashes, you must rebuild it from scratch
and apply a configuration.

Package
server image

Provision
server

instance

Change

Apply
configuration

change

! Change!

Apply
configuration

change

Providing service

Package new
server image

Provision
new server

instance

Change!

Apply
configuration

change

Providing service

The above figure outlines the difference between failing and effective change management. The top line showcases
a system where too many changes are applied—leading to configuration drift—while the second line shows a new
deployment system with fewer update occurrences. Ultimately, limiting the opportunities for updates within a
system drives down the chance of configuration drift.

TI
P

 4

6 tips to integrate security into your DevOps practices 27

Practicing Immutable Infrastructure means a new
approach to updating infrastructure. In the past,
whenever an update was required, an update would
subsequently push to the VM in question. This opens
your organization to configuration drift. The difference
with Immutable Infrastructure is that now instead of
updating existing VMs, you create an entirely new VM
that is an updated copy of the older server. This enables
you to automatically install and scan images before
deploying them to the cloud. In a DevSecOps approach,
images are heavily tested for any present CVEs before
being deploying at scale—thus, it’s important not to
use any configuration management tools that create
opportunities for untested changes. A best practice is
to apply any needed changes to the base image, test it,
and then roll it out. Make sure to tear down and replace
any servers that are yet to receive updates.

Taking it a step further, you can create an immutable
image without any remote access or secure shell (SSH)
access. This further secures the servers and protects
against hacks—especially if it is exposed on the
internet. And if a server becomes compromised, you
can detach it from the cluster pool and put it aside
for a forensic study. Later, recreate a new server with
a valid and known configuration applied to the base
immutable image. To accelerate server start up time,
tools like Azure Image Builder enable you to automate
the creation of base images set up with everything you
need, including the application.

Immutable Infrastructure is very useful for passing
security audits as your teams can track vulnerability
creation and fixes in real time. If a new CVE is detected,
you can rebuild a new base image with the proposed
security fix, and automatically roll it in your cluster—
fixing the vulnerability without any service interruption.
In the end, Immutable Infrastructure adopts the same
paradigm as building Docker images—deploying them
inside a cluster and updating them every time a new
image is created.

The ability to version control images is one of the biggest
benefits of Immutable Infrastructure. With Immutable
Infrastructure, you can create a file, the “recipe” to
create the image, and store it in version control. The file
is then versioned, wherein you can see every change
subsequently made by your teams. Of course, it’s
important to ensure that the image is managed securely.

Immutable Infrastructure
is very useful for
passing security audits
as your teams can track
vulnerability creation
and fixes in real time.

TI
P

 4

https://docs.microsoft.com/azure/virtual-machines/image-builder-overview

6 tips to integrate security into your DevOps practices 28

Store code in a secure version control system

The best way to store any version control files you create
via Immutable Infrastructure is inside a secure version
control system. These systems allow your enterprise
to define granular access to any repository containing
company code. Today, the most used format is Git.

Connecting your enterprise directory to your Git secures
access to both application and infrastructure repositories.
For example, you can connect GitHub to your Active
Directory to help secure access via single sign-on (SSO).
Additionally, you can tighten access control further by
leveraging multi-factor authentication (MFA) alongside
an Active Directory.

It’s crucial that you define fine-grained access to your
repository. Start by defining different roles (contributor,
owner, reader) set up with different access policies to your
code. Ensure your master (or main) branch is also secured.
Do this by allowing only a select few to contribute to the
master or main branch. Lastly, to further protect your
production systems, limit contributions to pull requests.
These version control and access policies in place, not
only make your enterprise more secure, they also help
make you better prepared for security audit.

The best way to
store any version
control files you
create via Immutable
Infrastructure is inside
a secure version
control system.

TI
P

 4

6 tips to integrate security into your DevOps practices 29

Set up configuration-as-code

At this point, we’ve only discussed infrastructure-as-
code, but an everything-as-code approach goes beyond
just your infrastructure. Configuration-as-code (CaC)
takes it one step further to manage configuration
resources as well. Ultimately, CaC allows server
configurations to be replicated across environments, all
without human intervention. Ansible is a great example
of an open-source automation tool for configuration
management and application deployment that can help
you realize full CaC adoption.

Ansible’s powerful automation simplifies long and
complex tasks, allowing your teams to concentrate
on developing added value. It works at a level above
development languages, executing on YAML files to
deploy configurations on specific figure types. This
means you don’t need to install any other software
on the server.

With Ansible, you can quickly deploy applications
and split their configurations into individual modules.
Ansible executes each module using playbooks that
act as an instruction manual to automatically control
services, packages, and files.

CaC tools like Ansible work in tandem with other
infrastructure-as-code tools, like Terraform. Terraform
helps to define and create your system infrastructure.
Ansible in turn, configures and deploys applications
by executing its playbooks on the provided server
instances. Use Terraform’s integrations to execute
a given Ansible script so you can use the programs
together. Once united, these programs form a strong
platform for effective configuration-as-code adoption.

Design
infrastructure Terraform code

(IAC)

Deploy
infrastructure / Code

Design
infrastructure

Ansible code

This figure shows a complete IaC environment. In this example, the pipeline deploys infrastructure after
it’s designed first with Terraform. Following this step, the infrastructure is configured with Ansible.

TI
P

 4

6 tips to integrate security into your DevOps practices 30

Implement pipeline-as-code

To set up pipeline-as-code, take the application
development-styled approach used for
infrastructure-as-code or configuration-as-code. In
a pipeline-as-code approach, you store all the CI/CD
pipelines inside the version control system as files—
enabling tighter version control for security reviews.

Successful adoption of pipeline-as-code in your
application pipeline hardens security at every stage
of deployment. For example, now you can scan
your holistic application code using Static (SAST),

Dynamic (DAST) and Interactive (IAST) Application
Security Testing methods. You can also integrate
Runtime Application Self-Protection (RASP) inside
servers to further protect applications.

Think of pipeline-as-code as an application deployment
blueprint for your team. This blueprint overviews all
the stages needed to compile and deploy secured
applications. With all these aspects now defined
“-as-code,” it’s possible to enforce and deploy secure
applications at scale for all of your teams.

Think of pipeline-as-code as an application
deployment blueprint for your team.
This blueprint overviews all the stages needed
to compile and deploy secured applications.

TI
P

 2

In the next tip we’ll explore another element of the everything-as-
code approach, policy-as-code, and its powerful applications when
used together with the other “-as-code” elements.

6 tips to integrate security into your DevOps practices 31

TIP 5

Realize compliancy
with policy automation
Both the regulatory landscape and the software
it governs are constantly changing, demanding
an automated approach to policy compliance

Regulatory regimes are increasingly rigorous. That’s a good thing. Nonetheless, ensuring compliance across a burgeoning
application landscape isn’t easy. The Enterprise DevOps 2020-2021 Report¹ states that almost half of the surveyed
executives said they were not sure which data compliance standards they needed to meet. The report further noted that
simply verifying the security of an application or environment when it’s first deployed is no longer sufficient. Clearly, the
logical solution is to ensure continuous compliance at every step of application development and management (ADM).

The best way to achieve this is with policy automation.

First, however, you need to set policies that relate to your enterprise’s regulatory and compliance
requirements, industry standards, and organizational goals—so that when an audit occurs, your security
compliance is never in question. When done correctly, these policies offer a set of controls to your DevSecOps
teams—ensuring security vulnerabilities are monitored and remedied at every stage of ADM.

To realize continuous compliancy, your organization
should follow six distinct steps toward policy
automation. Implementing these six steps, in turn,
will also aid in realizing closed loop policy automation.

1Microsoft, Enterprise DevOps 2020-2021 Report, 2020

TI
P

 5

https://azure.microsoft.com/resources/enterprise-devops-report-20202021/

6 tips to integrate security into your DevOps practices 32

Six steps to successful policy automation

How do you continuously apply compliance standards
throughout the DevOps cycle? Let’s not forget that, in
some cases, a system life can extend for many years.
This length of time makes policy non-conformance
inevitable, often due to the evolving regulatory
landscape. However, you can ensure that all workloads
and applications remain compliant by leveraging cloud
providers’ policy best practices to act as guardrails.
These policies are often managed by the security
or foundational team and should be automated.

In the example shown here, virtual machines (VMs) are
deployed onto Azure and a telemetry-based feedback
loop that links back to the development team. In this
scenario, it was defined that Azure VMs could not
have a public IP. However, this requirement would go
unnoticed until deployment occurs in steps 5, 6, and 7.
Prior to those steps, the engineering team did not receive
updates on these policies. This opens the enterprise to
vulnerabilities through outdated policy. For any update,
the team would need to review the updated cloud
platform policies and ensure all their code conformed.

5

Azure
DevTest Labs 8

3 4 6 8

GitHub Repos GitHub Actions Azure DevOps Azure Azure
Pipelines Virtual Machines Application8

Insights

2
7

Azure
Virtual Machines

1 9

Visual Studio Engineer

10

Azure Boards

TI
P

 5

6 tips to integrate security into your DevOps practices 33

Policy automation builds on the argument in Tip 2 (Integrate security in the early stages of the development lifecycle)
to illustrate why shifting security left is critical for every enterprise. Taking Microsoft Azure as our reference, here are six
steps for your enterprise to realize continuous compliance with policy automation:

1. Determine your policy set
2. Adopt a policy-as-code model
3. Update policies in code and push to Azure

4. Close the loop with compliance scanning
5. Shift left using a quality gate
6. Use Azure Security Center to

monitor and observe

Step 1: Determine your policy set

Step one in the process is to determine what policies you want to use. Your industry sector (e.g. banking,
healthcare, etc.) will have specific compliance requirements to adhere to. In Azure, you can select a sample
template to get started, like CIS, ISO27001, and PCI-DSS. It’s easy to set up these baselines in Azure very
quickly using Azure Blueprints.

Step 2: Adopt a policy-as-code model

The second step is to make sure your policies are stored in a code repository. Using a repository like
GitHub allows you to export these policies and ensure they are version controlled. This also sets the
operating state for making future policy updates and pushing changes back to Azure via code.

Step 3: Update policies in code and push to Azure

After the policies are version controlled and updated in GitHub, you can push changes back to Azure. You
can configure this action to automatically trigger when policies are updated. This makes tracking changes
easy with GitHub’s versioning control.

TI
P

 5

6 tips to integrate security into your DevOps practices 34

Step 4: Close the loop with compliance scanning

With so many teams across the enterprise, cloud services are constantly spun up, elevating the possibility
that the business becomes non-complaint. With your policies as code, you can now use GitHub to run
on-demand evaluation scans against your Azure Cloud environments. This closes the loop, outlining your
current state while empowering your teams with actionable steps to restore compliancy as necessary.

Step 5: Shift left using a quality gate

Now that your policies are created and maintained via code itself, teams across the enterprise can
understand, validate, and test policies against code even earlier in the software lifecycle. Helpful tools
like Open Policy Agent act as a quality gate in your Kubernetes (k8s) automated deployment system and
test Terraform code in your repository before deploying to any environment. This means your teams can
check policies even before a pull request is closed and subsequently remediate at the earliest stage.

Step 6: Use Azure Security Center to monitor and observe

The last step is monitoring and observing your enterprise’s compliance state using Azure Security
Center. The figure below shows an Azure Security Center compliance check summary—giving real-time
compliance telemetry. This is extremely helpful in the event an auditor wants to review the current state of
a subscription. This summary also offers remediation tasks for Azure Security Center to resolve any issues.

The end goal of these six steps is enabling closed
loop policy automation. When set up, compliancy
is continuously monitored and aligned with all
changes, at any time.

TI
P

 5

6 tips to integrate security into your DevOps practices 35

TIP 6

Secure and visualize your
software supply chain
Understanding your software systems
dependencies stemming from open source and
third-party platforms, frameworks, and components
further secures your software supply chain

Proprietary code isn’t the only source of modern security vulnerabilities. Often the bigger danger lies in
dependencies—any code referenced and bundled to make a software package work. In modern software,
80% or more¹ of most applications’ code comes from dependencies. These dependencies themselves rely on
dependencies, which results in a complex relationship diagram. The result? A dependency tree of complex and
dynamic relations within software that poses a significant security concern for enterprises. Not understanding
a system’s complex and full dependency tree provides a pathway for malicious actors to attack your systems.

So, how can you protect your software supply chain?

Step one is establishing transparency within each component’s update history, including: the releases,
the quality checks completed, versions, and documentation. This helps establish something akin to a
chain of custody on your code, components, and subsequent dependencies. But this is only a start.

To truly protect your software supply chain your enterprise will need to start (1) acting on insights gathered
by dependency tree visualization, and (2) growing transparency with a software bill of material.

1GitHub, Octoverse Security Report, 2020

TI
P

 6

https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf#page=10

6 tips to integrate security into your DevOps practices 36

Act on insights gathered by
dependency tree visualization

Just visualizing dependencies alone does not offer
your enterprise heightened security. While it can offer
great insights to your organization, the key step is
acting on those insights to keep your systems out of
dependency hell. Using these insights to practice proper
dependency management is the next logical step.

When practicing dependency management, consider
activities like scanning dependencies for vulnerabilities,
updating dependencies, and taking control of
dependency usage—limiting a potentially long list of
interdependent components. These are often called
conflicting, circular, and diamond dependencies,
and all result in hard to update and insecure systems.

Dependabot from GitHub helps drive proper dependency
management by visualizing the dependencies of any
components within a system—including all connected
dependencies. But the best part is how proactive the
tool can be. Dependabot will notify your team when
it locates a known vulnerability or when updates
become available for a specific dependency. It even
aids remediation practices by preparing and suggesting
necessary changes for updates in the codebase.

While powerful tools like Dependabot help solve
dependency management, maintaining a clear
set of policies remains paramount. It’s a must
for teams to form a clear policy for embracing
dependencies, managing updates, and locating
possible vulnerabilities. Without consistent policy
adoption across teams, an organization’s dependency
management funnels into chaos and security issues.

Percentage of active repositories that received Dependabot alerts1

100%

81.4%
72.8%

75%

59%
50% weighted

40.1% 40.2%
average33.2%

25%

6.5%

0
PHP Java JavaScript .NET Phyton Ruby

1GitHub, Octoverse Security Report, 2020

TI
P

 6

https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf#page=10

6 tips to integrate security into your DevOps practices 37

Grow transparency with a Software
Bill of Material (SBOM)

Transparency brings trust to systems. Teams who are
intimately familiar with the software modules they rely on,
develop best practices for updates and understand the
impact one module can have on their system and whole
delivery lifecycle.

An important practice to consider when building
transparency is creating a SBOM. Similar to how a
manufacturing bill of material details a product’s
construction, the same counts for a SBOM. A SBOM
describes the software module construction and provides
insight for security management. Further than just
hardening security, a SBOM can also lower license and
compliance risks.

SBOM standardization is underway. Multiple initiatives
across the security industry are attempting to solidify
the model for what a standardized, machine-readable
SBOM looks like. For now, keeping an updated list of
components, all accompanying version and update
strategies, along with known vulnerabilities and
maintainers is a good start. What’s more, a thorough
SBOM is seen as a quality indicator for a software product.

Similar to how a
manufacturing bill
of material details a
product’s construction,
the same counts for
a SBOM. A SBOM
describes the software
module construction
and provides insight for
security management.

TI
P

 6

6 tips to integrate security into your DevOps practices 38

Closing thoughts
By integrating security into your DevOps practices, you’re committing to the creation and management of a DevSecOps
team. Just as DevOps in the past blended operations and developer teams and practices, the introduction of security
to these teams requires patience. Large-scale changes often impact teams’ abilities to meet deadlines, so employees
will resist DevSecOps adoption if the preparation isn’t methodical. Successful DevSecOps adoption requires a
thoughtful, intentional blend of cross-team collaboration, a security-first culture, and cutting-edge technology.

It’s tempting to adopt powerful technology without first
considering company culture or existing processes. This
is a mistake. Building a security-first culture is paramount
to DevSecOps resonating with your teams. Consider
creating an InnerSource community or adopting a
Security Champion Model to spur collaboration across
teams and to spread cross-team knowledge.

After preparing your organization for a cultural shift, the
next challenge is harnessing cutting-edge technology
effectively. With a wealth of options, selecting the perfect
solution is tough. Start by selecting easily adoptable tools
and technology. Focus on technology that delivers value
either through improving observability, strengthening
security at early stages in application development,
or proactively providing remediation fixes.

Creating and managing a DevSecOps team is always distinct to your organization. Not all
recommendations will directly apply. It’s alright to explore unique ways to complement existing business
processes, culture, and people with security. Use these tips as a guide to equip the newly formed
DevSecOps team with all the information and resources needed to navigate the change.

Embracing DevSecOps is a software delivery advantage. Remove bottlenecks clogging your delivery pipeline
and provide the necessary controls for compliance and security. By uncovering vulnerabilities earlier, your
teams save time remediating issues and realizing compliancy, while also minimizing any associated costs.
Return to what’s important: propelling innovation with efficient and secure software delivery.

Successful DevSecOps
adoption requires a
thoughtful, intentional
blend of cross-team
collaboration, a security-
first culture, and cutting-
edge technology.

By uncovering vulnerabilities earlier, your teams
save time remediating issues and realizing
compliancy, while also minimizing
any associated costs.

How
Microsoft
& Sogeti
can help
DevSecOps teams succeed with
cross-team collaboration, a focus on
developer velocity, and cutting-edge
tooling. Microsoft offers learning
resources, products, and services to
position all DevSecOps teams for
innovation, regardless of language,
framework, or cloud.

Azure expert managed service provider,
Sogeti, continuously improves business-
focused digital delivery for DevSecOps
teams utilizing cloud and DevOps
Centers around the globe. Sogeti uses
its DevSecOps Adoption Framework and
CloudBoost library to drive continuous
improvement and InnerSource adoption
within DevSecOps teams—leveraging
the full platform capabilities of Azure for
governance, security, and compliance as
a cloud-native foundation.

Share this
Inspire other technical leaders
to integrate security into their
DevOps practices by sharing
this whitepaper on social media
or email.

Resources

Microsoft DevSecOps solution: Integrate security into every
aspect of the software delivery lifecycle. Learn about how
Microsoft offers a complete solution to enable DevSecOps, or
secure DevOps, for apps on the cloud (and anywhere) with Azure
and GitHub.

GitHub: Secure at every step. GitHub helps enterprises stay
ahead of security issues, leverage the security community’s
expertise, and use open source securely.

Microsoft Azure: Security is integrated into every aspect of
Azure. Strengthen your security posture with Azure. Azure offers
you unique security advantages derived from global security
intelligence, sophisticated customer-facing controls, and a secure
hardened infrastructure.

Documentation: Learn how Azure security helps to protect your
applications and data, support your compliance efforts, and
provide cost-effective security for organizations of all sizes.

Talk to our sales team: Talk to our specialists to see how
Microsoft can help your DevSecOps team.

Sogeti: We’re working with Microsoft to ensure our clients create value from
new DevOps tooling, approaches, and cloud capabilities.

Sogeti DevSecOps Adoption Framework: Release faster with a DevSecOps
Enterprise Reference Architecture, product descriptions, and DevSecOps
Blueprints.

Sogeti CloudBoost library: Automate the environment provisioning on
Azure cloud platform with our repository of reusable templates and scripts.

Sogeti OneNative services: Enable dynamic public cloud development from
design, to build, to run.

https://azure.microsoft.com/solutions/devsecops/
https://github.com/features/security
https://azure.microsoft.com/overview/security/
https://docs.microsoft.com/azure/security/
https://azure.microsoft.com/overview/meet-with-an-azure-specialist/
https://www.sogeti.com/services/devops-services/
https://twitter.com/intent/tweet?text=%20I%20just%20learned%206%20tips%20to%20integrate%20security%20into%20my%20DevOps%20practices.%20You%20should%20too%20by%20reading%20this%20book%20-%206%20tips%20to%20integrate%20security%20into%20your%20DevOps%20practices:%20https://aka.ms/DevSecOpsPaper/
mailto:?subject=6%20tips%20to%20integrate%20security%20into%20your%20DevOps%20practices&body=%20I%20just%20learned%206%20tips%20to%20integrate%20security%20into%20my%20DevOps%20practices.%20You%20should%20too%20by%20reading%20this%20book%20-%206%20tips%20to%20integrate%20security%20into%20your%20DevOps%20practices:%20https://aka.ms/DevSecOpsPaper

Authors

Samit Jhaveri is the Director of Product Marketing
with Microsoft Azure focused on cloud application
development and DevOps with GitHub. He serves as the
business leader working across product management,
sales leadership & finance with responsibility for defining
and executing the e2e go-to-market strategy including
pricing & offers and execution plans such as campaigns
and field & partner motions for growing the business.
Prior to the current role, Samit led an engineering team
at Microsoft’s Server and Tool Division and was
responsible for shipping several B2B solutions for
different vertical industries. Samit earned his MBA
from the University of Washington and Masters in
Management Information Systems from the University
of Arizona.

Clemens Reijnen is Sogeti’s Global CTO Cloud Services
and DevOps leader. He has been awarded the Microsoft
Most Professional Award for 10 years in a row and is a
SogetiLabs Technical Fellow. He co-authored the book
‘Enterprise DevOps Report 2020-2021’ with Microsoft
and writes frequently on cloud and DevOps on Sogeti.
com. As a global DevOps leader, he works closely with
Sogeti’s large enterprise customers to ensure their
cloud adoption and Enterprise DevOps transformation
programs create value for the business.

Sogeti co-authors:
André Andersen, Gwendal Jabot, Laurent Grangeau,
Matt Braafhart, Olivier Dupré, Peter Rombouts,
Rahul Sharma, Sandra Parlant, & Tony Jarriault.

© 2021 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed
in this document, including URL and other internet website references, may change without notice. You bear the risk of
using it. This document does not provide you with any legal rights to any intellectual property in any Microsoft product.
You may copy and use this document for your internal, reference purposes.

https://azure.microsoft.com/resources/enterprise-devops-report-20202021/

	Structure Bookmarks
	Octoverse Security Report
	The Importance of Fixing and Finding Vulnerabilities in Development
	Developer Velocity: Lessons from Digital Leaders
	Awash In Regulations, Companies Struggle With Compliance
	OWASP Top 10 vulnerabilities
	Azure Secur
	NIST framework
	CIS Benchmark
	Secure DevOps Kit for Azure
	OWASP Top 10 vulnerabilities
	NIST
	CIS Benchmark
	Azure Security Center
	Azure Arc
	Azure Defender
	Azure Sentinel
	Azure Image Builder
	Enterprise DevOps 2020-2021 Report
	Octoverse Security Report
	Octoverse Security Report
	DevSecOps solution
	GitHub
	Microsoft Azure
	Documentation
	Talk to our sales team
	Sogeti
	Link
	Enterprise DevOps Report 2020-2021

Accessibility Report

		Filename:

		6 tips to integrate security into your DevOps practices_V6.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

